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Abstract
Temperature dependence of the magnetic characteristics of Fe and Fe–Ni Invar is considered in
the dynamic nonlocal approximation of the spin-fluctuation theory. Calculations by several
numerical methods show that the magnetic characteristics can have a discontinuous jump at
high temperatures, well below the Curie temperature. Using the methods of catastrophe theory,
we investigate the effect of small changes in the initial data on the results of the calculation. It is
demonstrated that the discontinuous jump can only be smoothed but cannot be eliminated
entirely without a significant change in the system of equations of the spin-fluctuation theory.
Possible variants of such changes are discussed.

1. Introduction

Magnetic properties of transition metals and alloys at finite
temperatures are usually calculated in the framework of
various approximations of the spin-fluctuation theory (SFT)
(see, e.g., [1–3] and references therein). A number of such
approximations were developed in [4, 5] and fairly successfully
applied first to ferromagnetic metals Fe, Co and Ni [6–8] and
then to the Invar alloy Fe–Ni [9, 10].

The approximations [4, 5] are based on the functional
integral method developed in [11, 12]. For the calculation
of magnetic properties of strong ferromagnetic metals this
method was first used in the static local approximation
(SLA) in [13, 14]. Since even in the SLA the functional
integral method is fairly complex, a number of significant
simplifications were introduced in [13, 14]. In particular,
the initial density of states (DOS) was always chosen in a
simplified model form and the Fermi distribution was replaced
by a step function4. The approximation [4] is also an SLA, but

4 Moreover, in [14] the two-field model of spin fluctuations was used, which
means neglecting the vectorial nature of the magnetic moment.

it uses the real band structure and advanced numerical methods
for calculation of integrals involving the Fermi function [15]
or its derivative [6]. However, in full accord with other SLA
calculations the approximation [4] gives the magnetization that
is not in sufficient agreement with the experiment, especially at
low temperatures, gives a small effective moment in the Curie–
Weiss law, etc. In this connection, in [5] the approximation [4]
was extended to the case of dynamic nonlocal fluctuations.

The methods [4, 5] use a self-consistent quadratic
approximation to the free energy of electrons in a random
exchange field with averaging of the derivatives according
to [16]. The zero-point fluctuations are taken into account in
the initial DOS calculated by the density-functional method,
and in the effective interaction constant U , determined from
the experimental magnetic moment at T = 0. The thermal
fluctuations are calculated self-consistently through the spin
susceptibilities. Thus, the system of nonlinear equations solved
in approximations [4, 5] of the SFT is considerably more
complex than the standard one in the mean-field theory (see,
e.g., [2, 17, 18]).

Calculations [4–10] showed that the solution to the system
of equations of the SFT can be unstable at high temperatures,
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well below the Curie temperature, TC. It is especially
pronounced in Fe and Fe–Ni Invar, where spin fluctuations
increase sharply in this region. Most often the instability takes
the form of a discontinuous change of magnetic characteristics
with temperature (the first-order-like transition). However, the
discontinuous jump is usually too far from TC to be interpreted
in the framework of the critical phenomena. (See the theory for
the critical region in, for example, [19, 20].)

The first-order phase transition in magnetization, m, in
the critical region was observed in various versions [2, 21–23]
of the self-consistent renormalization (SCR) spin-fluctuation
theory developed for weak ferromagnetic metals. In the SCR
calculations the jump in m was usually explained by the
approximations done there. In particular, in phenomenological
theory [21] it was related to the non-account of critical
fluctuations, while in [2] to the approximative character of the
theory [21] itself, even after its improvement by going from
a scalar field for the spin density to a vector field, which
is more realistic. In the theory [22] the first-order transition
at TC appeared in a simplified model for the longitudinal
susceptibility χ‖. When the χ‖ was treated properly, this
discontinuity was eliminated. Finally, in [23, 24] the problem
of the fictitious first-order phase transition at TC has been
solved by taking into account the zero-point spin fluctuations
in the SCR theory.

In strong ferromagnets, such as Fe and Fe–Ni Invar,
the origin of the instability is unclear. Firstly, the
approximations [4, 5] and those [2, 21–23] for weak
ferromagnets employ different SFTs: the functional integral
theory and SCR theory, respectively. Secondly, and above
all, [4, 5] and [2, 21–23] consider the instability in different
temperature ranges: over a wide range below TC and in the
narrow range near TC, respectively. As is known [25], in
the phase transition region the long-wave fluctuations play the
predominant role. The nonlocal approximation [5] takes this
fact into account, but insufficiently. Therefore, here we do not
discuss the temperature dependence near TC.

In the present paper, we study the discontinuous jumps
in the temperature dependences of the magnetic characteristics
in the dynamic nonlocal approximation (DNA) of the SFT by
the example of Fe and Invar alloy Fe0.65Ni0.35. The outline
of this paper is as follows. First, we demonstrate that the
instability is not an artefact of the calculation method. To
this end, we show that the coordinate bisection method used
in [4–10] gives a good agreement with the multidimensional
minimization over a wide range of temperatures. Second,
through the calculation with the forward and backward changes
of temperature, we demonstrate the hysteresis behaviour of
the magnetic characteristics. This fact allows us to attribute
the discontinuity in the temperature dependence to the system
of equations of the SFT using the methods of catastrophe
theory [26]. Next, we examine the effect of small changes
of the initial data on the temperature dependences. This
way we smooth the discontinuous change in the temperature
dependence. Possible refinements of the approximations [4, 5]
of the SFT are discussed in the conclusion.

Note that the problem of temperature dependence appears
in the DNA of the SFT when the spin fluctuations increase

sharply near TC. In that case, the solution to the system of
equations of the SFT becomes nonunique over a certain range
of temperatures, i.e. the problem becomes ill-posed. Of the
three solutions emerging in that range of the parameter T the
middle one is unstable with any iterative procedure. In the
Stoner and Heisenberg mean-field theories, with the single
variable, magnetization5, one does not encounter the problem:
the magnetization curves are always smooth. In the presence
of two or three variables (magnetization and spin fluctuations)
the problem becomes much more complicated, and in a certain
domain of the parameter T singularities may appear. They
appear when the strong fluctuations and large magnetization
are both present. Strong feedback of these quantities through
the amplification factor (6) yields the instability.

In a sense, the degeneracy of the solutions near a phase
transition is a general property of fluctuation theories (not
only spin-fluctuation ones) [26]. However, the character of
degeneracy depends strongly on the details of the specific
theory; in particular, it depends on the way the anharmonicity
and nonlocality of the fluctuations are taken into account.

Finally, the choice of the disordered Invar alloy
Fe0.65Ni0.35 is not accidental. First, this alloy has a large
content of Fe, and thus exhibits all the problems connected
to a sharp increase of the fluctuations at high temperatures.
Second, and most important, Fe0.65Ni0.35 is the alloy that, in
our opinion, can explain the Invar problem per se (for a review
see [27–30]).

2. Nonlinear system

The problem of calculation of the magnetic properties of
transition metals at finite temperatures in the SFT is reduced to
the solution of the system of four nonlinear integro-differential
equations for the chemical potential μ, mean on-site spin
moment sz and mean square of the spin fluctuations ζ x and
ζ z [5]:

ϕ1(μ, sz, ζ x , ζ z) ≡ n↑ + n↓ − ne = 0 (1)

ϕ2(μ, sz, ζ x, ζ z) ≡ (n↑ − n↓)/2 − sz = 0 (2)

ϕ3(μ, sz, ζ x , ζ z) ≡ U T/(2Nλx
L)I x − ζ x = 0 (3)

ϕ4(μ, sz, ζ x, ζ z) ≡ U T/(2Nλz
L)I z − ζ z = 0. (4)

Here

nσ = 1

π

∫
Im gσ (ε) f (ε) dε (5)

is the number of electrons with spin projection σ = ↑,↓ or
±1, ne is the total number of electrons in the d band, U
is the constant of the electron–electron interaction, T is the
temperature (in energy units), N is the number of d bands (per
atom and spin),

λα
L = 1 − Uχα

L (0) α = x, z (6)

and the function I α , depending on the approximation of the
SFT, i.e. static local (SL), static nonlocal (SN), dynamic

5 The change of chemical potential is not critical.
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local (DL) or dynamic nonlocal (DN), is calculated from the
formulae

I α
SL = 1 (7)

I α
SN = 3

b3

(
b − a arctan

b

a

)
(8)

I α
DL = 2

π
arctan cα (9)

I α
DN =

∫ 1

0

1

a2
α + b2

αk2

2

π
arctan

cα

a2
α + b2

αk2
3k2 dk. (10)

In formulae (5)–(10) χα
L (0) is the local susceptibility (at zero

frequency); f (ε) = [exp((ε − μ)/T ) + 1]−1 is the Fermi
function;

gσ (ε) =
∫

ν(ε′)
ε − σ 〈Vz〉 − ��σ (ε) − ε′ dε′ (11)

is the mean single-site Green function, where ν(ε) is the non-
magnetic DOS, 〈Vz〉 = −Usz is the mean exchange field and
��σ(ε) is the fluctuation contribution to the self-energy part,
calculated from the formula [4]

��σ(ε) = gσ (ε)ζ z

1 + 2σ 〈Vz〉gσ (ε)
+ 2gσ̄ (ε)ζ x σ̄ ≡ −σ ;

(12)

a2
α = λα

0 /λα
L λα

0 = 1 − Uχα
0 (0) b2

α = (1 − a2
α)/0.6

cα = Uϕα
Lπ2T/(6λα

L)

where χα
0 (0) is the static uniform susceptibility, and

ϕα
L = d Im χα

L (ε)

dε

∣∣∣∣
ε=0

.

The quantities χα
L (0) and ϕα

L are calculated from the formulae

χ x
L (0) = − 1

π

∫
Im(g↑g↓) f dε

ϕx
L = 1

π

∫
Im g↑ Im g↓

(
−∂ f

∂ε

)
dε

χ z
L(0) = − 1

2π

∫
(Im g2

↑ + Im g2
↓) f dε

ϕz
L = 1

2π

∫
[(Im g↑)2 + (Im g↓)2]

(
−∂ f

∂ε

)
dε.

At T < TC the quantities λx
0 and λz

0 are set to be zero. At
T > TC they are equal to each other, and the static uniform
susceptibility χ z

0 (0) is defined using numerical differentiation
of the spin moment sz with respect to the magnetic field h (the
mean field 〈Vz〉 is kept fixed):

χ z
0 (0) = −∂sz

∂h
	 − sz(〈Vz〉 + �h/2) − sz(〈Vz〉 − �h/2)

�h
.

3. Solution methods

Consider a system of nonlinear equations in the n-dimensional
Euclidean space:

ϕ1(x1, x2, . . . , xn) = 0, ϕ2(x1, x2, . . . , xn) = 0,

· · · ϕn(x1, x2, . . . , xn) = 0.
(13)

Let the system (13) have at least one solution such that its
i th component belongs to the interval [ai, bi ], i = 1, . . . , n.

3.1. Coordinate bisection method

First suggested in [31], the coordinate bisection method applies
as follows6. Fix all the variables but the first one: x2 = a2, . . .,
xn = an. Then ϕ1(x1, a2, . . . , an) is a function of one variable
x1. In the interval [a1, b1] by the bisection method find the root
of the first equation of system (13), x (1)

1 (a2, a3, . . . , an). Com-
pute the value of the function ϕ2(x (1)

1 , a2, . . . , an) at the left
endpoint of the interval for x2. Set x2 = b2 and find the root of
the first equation of the system, x (2)

1 (b2, a3, . . . , an). Compute
the value of the function ϕ2 at the right endpoint of the inter-
val for x2 with the obtained ‘new’ x1: ϕ2(x (2)

1 , b2, a3, . . . , an).
Continue with the bisection of the second equation and find
the root x (1)

2 (a3, a4, . . . , an); in particular, the root x1 is
equal to a certain x (k1)

1 (x (1)
2 , a3, . . . , an). Compute the value

of the third function ϕ3(x (k1)
1 , x (1)

2 , a3, a4, . . . , an) at the left
endpoint for x3. At x3 = b3 by the bisection method
find the root of the second equation x (2)

2 (b3, a4, . . . , an);
in particular, the root of the first equation is recalculated
for the respective x2 and x3. Once x1 and x2 with fixed
x3 = b3 are found, compute the value of the function
ϕ3(x (k1+k2)

1 , x (2)

2 , b3, a4, . . . , an) at the right endpoint for x3.
Continue the bisection method for the third equation and find
the root x (1)

3 (a4, . . . , an); in particular, x (l1)
2 (x (1)

3 , a4, . . . , an)

and x
(k1+k2+...+kl1 )

1 (x (l1)
2 , x (1)

3 , a4, . . . , an) are calculated. Con-
tinue analogous calculations for the equations ϕ4, . . . , ϕn and
find x4, . . . , xn . Thus, the solution of the system of non-
linear equations (13) reduces to a multiple solution of one-
dimensional problems by the bisection method.

An advantage of the coordinate bisection method is that it
does not use derivatives nor their approximations as opposed
to quasi-Newton methods (see the next subsection). A large
number of steps in the coordinate bisection method is not a
serious weakness for the solution of the system (1)–(4) since
the dimension of the system is not high and the computation
time for the functions ϕi is small. We also remark that, to
secure convergence of the method, it is necessary to specify
the search domain with precision (for the details see [36]).
Indeed, with the intervals [ai, bi ] too large, the solution cannot
be found (in contrast to the one-dimensional bisection, where
a root is always found once there is a sign change of the
function). The specific character of the problem considered in
the present paper allows us to choose the initial approximation
at zero temperature with great precision, and the small step

6 In the literature on numerical methods, we have not come across any
generalizations of the bisection method to systems of equations.
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size over the temperature ensures the proximity of the initial
approximation in the successive calculations.

Since at fixed temperatures the spin fluctuations ζ x and ζ z

are of the same order, a modification of the system of the SFT
based on the transformation to the mean fluctuation (for the
description see the appendix) has been successfully used in the
coordinate bisection calculations [4–10].

3.2. Multidimensional minimization

As is well known, the solution of the system of nonlinear
equations (13) can be reduced to minimization of the function

F(x1, x2, . . . , xn) =
n∑

i=1

(ciϕi(x1, x2, . . . , xn))
2 (14)

where ci are the scale factor coefficients chosen according
to the specific character of the problem. The function (14)
is nonnegative and vanishes if and only if all the equations
ϕi(x1, x2, . . . , xn) = 0 are valid.

To solve this problem one can use an iterative method. In
the case of the simple iteration, from the explicit form of the
functions ϕ2, ϕ3 and ϕ4 in (2)–(4) we see that their values are
exactly equal to the differences of the respective variables from
the current and preceding steps:

ϕ2(μk, sz
k , ζ

x
k , ζ z

k ) = sz
k − sz

k−1 (15)

ϕ3(μk, sz
k , ζ

x
k , ζ z

k ) = ζ x
k − ζ x

k−1 (16)

ϕ4(μk, sz
k , ζ

x
k , ζ z

k ) = ζ z
k − ζ z

k−1. (17)

We do not use the simple iteration method because of its low
convergence rate. However, it is natural to assume that for
another iterative minimization algorithm the relations (15)–
(17) are satisfied approximately for the iterations close enough
to the minimum point:

ϕ2 ≈ �sz ϕ3 ≈ �ζ x ϕ4 ≈ �ζ z. (18)

Hence the scale factor coefficients c2, c3 and c4 are chosen
in such a way that the magnitudes of c2ϕ2, c3ϕ3 and c4ϕ4 are
approximately equal to the relative errors:

c1 = 1 c2 = 1/sz(0)

c3 = c4 = 1/〈Vz(0)〉2 = 1/(Usz(0))2.

The value of c1 is experience-based.

3.2.1. Quasi-Newton methods. The classical Newton’s
method for a function minimization operates as follows
(see, e.g., [32, 33] for details). At the kth step, to refine
the approximation x (k) of the local minimum x∗ of the
multivariable function F(x) one constructs its quadratic Taylor
approximation in the matrix-vector form:

F(x) ≈ F(x (k)) + (x − x (k))t∇F(x (k))

+ 1
2 (x − x (k))t∇2 F(x (k))(x − x (k)) (19)

where x is the column vector (x1, . . . , xn)
t , ∇F(x) is the

gradient of the function F at the point x , i.e. the vector, whose
i th component is equal to (∇F)i = ∂ F/∂xi , and ∇2 F(x) is the

Hessian matrix of the second partial derivatives of the function
F at point x :

(∇2 F)i j = ∂2 F

∂xi∂x j
.

The minimum of the function (19) is attained at the point

x (k+1) = x (k) − [∇2 F(x (k))]−1∇F(x (k))

which is taken as the next initial approximation. Hence,

F(x (k+1)) ≈ F(x (k))

− 1
2 (x (k+1) − x (k))t∇2 F(x (k))(x (k+1) − x (k)).

Clearly the value of the function at the kth step decreases if the
matrix ∇2 F(x (k)) is positively defined. It is easy to show that
Newton’s method converges in a small enough neighbourhood
of the local minimum if the function has continuous first
and second derivatives. Moreover, the rate of convergence is
quadratic.

Usually Newton’s method is included in a more
general procedure. This is motivated by the fact that
far from the minimum point the matrix ∇2 F(x (k)) cannot
be positively defined, and thus the shift by the vector
−[∇2 F(x (k))]−1∇F(x (k)) can, as well, not bring a decrease
of the function. In that case the matrix ∇2 F(x (k)) is replaced
by a close symmetric positively defined matrix B(k). Positive
definiteness of the matrix B(k) guarantees the decrease of the
function: F(x (k+1)) < F(x (k)). The vector ∇F(x (k)) is also
usually replaced by a finite-difference approximation. The
methods of the second order that use approximations of the
gradient of the function and approximations of the matrix
of second derivatives instead of the precise values are called
quasi-Newton methods.

3.2.2. Coordinate descent method. Multidimensional
minimization of the function F(x1, x2, . . . , xn) can be
performed by a more slow but more reliable coordinate descent
method. The gist of the method is as follows. As an initial
approximation choose a point M0 with coordinates (x (0)

1 , x (0)
2 ,

. . . , x (0)
n ). Fix all the coordinates but the first one. Then

F(x1, x (0)

2 , . . . , x (0)
n ) is a function of one variable, x1. Solving

the one-dimensional optimization problem for this function,
we replace the point M0 by the point M1 = (x (1)

1 , x (0)
2 , . . .,

x (0)
n ), where the function F takes on the minimal value with

respect to x1, with other coordinates fixed. Now fix all the
coordinates except for x2, and consider F as the function of
this coordinate, F(x (1)

1 , x2, x (0)

3 , . . . , x (0)
n ). Again, solving the

one-dimensional optimization problem, we find its minimum
point x2 = x (1)

2 , that is M2 = (x (1)

1 , x (1)

2 , x (0)

3 , . . . , x (0)
n ).

Similarly, the descent over the coordinates x3, x4, . . . , xn is
performed, then a new cycle from x1 to xn is started and so
on. Finally, there is a sequence of the points M0, M1, . . .

such that the values of the function F at these points form a
nondecreasing sequence F(M0) � F(M1) � . . .. The process
stops when either the accuracy of the function or the accuracy
of the arguments or the maximum number of iterations (cycles)
is reached.

For smooth functions, given a good initial approximation,
coordinate descent converges to the minimum. Among the

4
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Figure 1. Sketch of the instability through the multiple solution. The
projection (dotted line) of the set of all multiple solutions (heavy
line) separates the domains with three solutions and one solution on
the parameter plane.

advantages of the coordinate descent is the possibility to use
simple algorithms of one-dimensional optimization.

For one-dimensional optimization, we use the method
that combines the golden section procedure with successive
parabolic interpolation [34, 35]. The method is characterized
by the quadratic rate of convergence in a neighbourhood of the
minimum of a smooth function and a guaranteed linear rate
of convergence in the case of a nonsmooth function with a
nontrivial relief.

4. Instability through multiple solutions

In [36] we proved that the coordinate bisection method
converges in a neighbourhood of a nondegenerate solution to
a system of nonlinear equations. Therefore, the most probable
cause of the instability in the system of equations (1)–(4) at
high temperatures is the degeneracy, i.e. the determinant of the
Jacobi matrix vanishes:

det

∥∥∥∥∂(ϕ1, ϕ2, ϕ3, ϕ4)

∂(μ, sz, ζ x, ζ z)

∥∥∥∥ = 0. (20)

An explicit check of condition (20) is difficult since finite-
difference approximations of the gradients lead to considerable
loss of precision. An alternative approach is to demonstrate
that locally the solution to the system of equations (1)–(4)
becomes nonunique when the effective interaction constant U
varies over an interval of its admissible values.

Consider the effective interaction constant U as an
additional parameter to the temperature T . The existence of
three solutions to the system of equations (1)–(4) is verified
through the hysteresis behaviour of the solution components μ,
sz , ζ x and ζ z . With U fixed, the hysteresis in, say, sz visualizes
a jump down as T passes through a certain T2, and a jump up
as T passes through a T1, T1 < T2, in the backward direction.
Hence the curves sz(T ), obtained through the forward and
backward changes of temperature over T1 < T < T2, form
a closed contour.

Figure 2. The DOS of the d band of non-magnetic Fe0.65Ni0.35,
obtained from [37] (——), and the one smoothed out by convolution
with the Lorentz function of the half-width � = 0.001 (− − −).
The energy ε and half-width � are in units of the bandwidth
W = 9.70 eV. The vertical line indicates the position of the
Fermi level εF.

Mathematically, that means there are three solutions at
the interval T1 < T < T2: two stable and one unstable
in between them. At T = T1 and T = T2, a pair of
adjacent solutions merges into a multiple one, which results in
the degeneracy (20) of the system of equations (1)–(4). For
T < T1 and T > T2, the system has only one solution,
which is stable (for the details see [36]). Furthermore, if the
interval (T1, T2), that encloses the hysteresis loop, collapses to
a point T ∗ as U tends to a particular U ∗, then the temperature
dependence of each variable has an inflection point, where all
the three solutions merge (in figure 1; for simplicity, the origin
is translated to the inflection point (s∗

z , T ∗, U∗)). To eliminate
the instability near the inflection point a regularized version of
the coordinate bisection method must be developed.

The above analysis yields that a small change of U can
smooth out a discontinuous jump, which is half of a hysteresis
loop, but a change over of the curvature in the temperature
dependence may still persist.

5. Results and discussion

The numerical methods for solving a system of nonlinear
equations are investigated in the DNA of the SFT, first, by
the example of the Invar alloy Fe0.65Ni0.35. The initial non-
magnetic DOS ν(ε) (figure 2) is formed from the two spin-
polarized DOSs obtained from the self-consistent calculation
for the disordered Fe0.65Ni0.35 [37]. A detailed description of
ν(ε) formation is given in [10]. The experimental value of
the spin magnetic moment per atom mexp

0 = 2Nsz (0) μB =
1.75 μB (where μB is the Bohr magneton), used to determine
the effective interaction constant U , is taken from [38]7.

7 Note that the experimental value mexp
0 cited in [38] is equal to 1.77 μB,

but it includes a small (<0.1 μB) positive contribution of the orbital magnetic
moment [39].
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Table 1. The results of the calculation of the basic magnetic characteristics of the Invar Fe0.65Ni0.35 obtained by the coordinate bisection
method and by the multidimensional minimization.

Temperature Coordinate bisection Multidimensional minimization

TW T/T exp
C mr ζ x

r ζ z
r mL

r mr ζ x
r ζ z

r mL
r ITER

0.0000 0.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1
0.0010 0.216 0.985 0.011 0.005 0.998 0.985 0.011 0.005 0.999 6
0.0020 0.433 0.942 0.040 0.019 0.994 0.943 0.040 0.019 0.994 12
0.0021 0.454 0.936 0.044 0.022 0.993 0.937 0.044 0.021 0.994 7
0.0022 0.476 0.928 0.049 0.024 0.992 0.930 0.048 0.024 0.993 8
0.0023 0.498 0.920 0.054 0.026 0.991 0.922 0.054 0.026 0.992 10
0.0024 0.520 0.912 0.060 0.029 0.990 0.913 0.059 0.029 0.991 13
0.0025 0.541 0.901 0.066 0.033 0.988 0.903 0.065 0.032 0.989 16
0.0026 0.563 0.889 0.073 0.036 0.987 0.891 0.072 0.036 0.988 21
0.0027 0.584 0.875 0.082 0.041 0.985 0.878 0.081 0.040 0.986 30
0.0028 0.606 0.860 0.091 0.046 0.983 0.862 0.090 0.045 0.984 45
0.0029 0.628 0.839 0.104 0.052 0.981 0.843 0.102 0.051 0.982 74
0.0030 0.649 0.813 0.118 0.060 0.978 0.819 0.115 0.059 0.980 137
0.0031 0.671 0.776 0.139 0.071 0.975 0.784 0.135 0.069 0.977 280

Figure 3. The magnetization m(T )/m(0) (—— calculation, ♦♦♦♦
experiment [38]), the mean square of spin fluctuations ζ x (- - - -) and
ζ z (– – –) in units of the square of the mean exchange field at T = 0,
the reciprocal paramagnetic susceptibility χ−1(T ) (— · —) in units
of T exp

C /μ2
B and the local magnetic moment mL(T )/m(0) (· · · · · ·) of

the Invar Fe0.65Ni0.35 calculated in the DNA of the SFT with
mexp

0 = 1.75 μB under forward and backward changes of
temperature.

The results of the calculations of the basic magnetic
characteristics of the Invar Fe0.65Ni0.35 obtained by the
coordinate bisection method and via multidimensional
minimization by the coordinate descent method are represented
in figure 3 and in table 1. Since the most important physical
parameter in the Invar problem is not the magnetization
m(T ) = 2 μBsz(T ), but the local magnetic moment mL(T ),
calculated in the DNA by the formula [5]

mL(T )/m(0) = [((Usz(T ))2 + 2ζ x + ζ z)/(Usz(0))2]1/2

it is also shown in the figure and table.
The investigation was carried out with the temperature TW

ranging from 0 to 0.01. (TW is the temperature in units of the
bandwidth W = 9.70 eV ≈ 1.1×105 K.) First the temperature

step is selected to be relatively large (�TW = 0.001), but
as the values of the variables sz , ζ z and ζ x start changing
considerably, the programme switches to a smaller step size
(�TW /20 = 0.000 05).

Let us first analyse the results obtained by the coordinate
bisection method. Calculation accuracies in the variables μ,
sz , ζ x and ζ z for one-dimensional bisections are selected to be

δ1 = 10−4 δ2 = 10−4 × sz(0) ≈ 2 × 10−5

δ3 = δ4 = 10−4 × (Usz(0))2 ≈ 10−6
(21)

so as to get relative errors of approximately the same order:
10−4 (see the explanation to the formula (18)).

As can be seen from figure 3 and table 1, at T � 0.68 T exp
C

a gradual increase of fluctuations and a smooth decrease of
the magnetic moment are observed: during one small step in
temperature the reduced fluctuations ζ x

r = ζ x/〈Vz(0)〉2 and
ζ z

r = ζ z/〈Vz(0)〉2 increase by 0.001–0.01 and the reduced
magnetic moment mr = sz/sz(0) decreases by 0.002–0.028.
The picture changes at temperatures T � 0.69 T exp

C . First an
abrupt change in fluctuations and a jump down in the magnetic
moment are observed, then the change in this quantities fails to
be smooth. However, the preset accuracy of the solution to the
system of equations (1)–(4) is retained at all temperatures.

It was the problem of instability of the solution to
the system of equations (a jump down in the magnetic
moment and abrupt change in fluctuations) that urged us
to use the multidimensional minimization. The calculation
was performed with the same initial data and at the same
temperatures as in the one by the first method.

To minimize by the quasi-Newton method, we used the
Fortran (double precision) routine UNCMND [35], which
seeks a minimum of the function with line search. Results
of the calculations did not give satisfactory agreement with
the ones of the coordinate bisection method even in the
temperature interval T � 0.68 T exp

C . Instead of the solution to
F(x) = 0 the routine converges to a local minimum far off the

8 In table 1, to be brief, we represent only every second set of values with the
small step.
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absolute one. It is necessary to note that the routine UNCMND
does not give a user full control over the low level parameters
(such as maximal step size). The routine also assumes that
the function values are obtained accurately (to an accuracy
comparable to the precision of the computer arithmetic). Since
we aimed at implementing a reliable method that would work
over a wide range of temperatures, we rejected the idea of
tuning the quasi-Newton method. Instead, we implemented
the coordinate descent method, which is slower but easier to
control.

In the coordinate descent method the accuracy of the
function (14) was chosen to be 10−7. This value guarantees
the relative errors over sz , ζ x and ζ z to be nearly the same
as in the calculation by the coordinate bisection method,
i.e. within 10−3–10−4. As table 1 shows, at temperatures
T � 0.68 T exp

C , the results obtained by the coordinate descent
are in close agreement with the ones obtained by coordinate
bisection (to the prescribed precision of 3–4 significant digits).
However, starting from T = 0.69 T exp

C , the desired accuracy
of the minimized function, 10−7, cannot be reached even with
the maximum number of cycles equal to 600, although a
monotonic decrease of the magnetic moment and a monotonic
increase of the fluctuations still persist.

It is important to note that the values of sz , ζ x and ζ z

obtained by coordinate descent practically coincide with the
ones obtained by coordinate bisection over a wide temperature
range (see table 1). This is a strong indication that the
instability at high temperatures is related to the system itself
rather than the solution method.

To demonstrate that the numerical instability at T �
0.69T exp

C is caused by the degeneracy of the system (1)–
(4) near the left endpoint of this interval, we investigated
a possibility of the hysteresis behaviour of the solution.
The calculation with the forward and backward changes of
temperature showed that, contrary to the experiment, the
curves sz , ζ x and ζ z have a small hysteresis loop (figure 3).

However, with the admissible initial magnetic moment
mexp

0 = 1.70 μB (see footnote 7), the constant of the effective
interaction U is equal to 0.566 W (instead of U = 0.582 W
for mexp

0 = 1.75 μB) and the hysteresis loop disappears
(figure 4). The curves sz , ζ x and ζ z obtained in the calculation
with the backward change of temperature almost replicate
the ones obtained with the forward calculation, except for
small deviations in the instability region, and moreover these
deviations do not have strictly vertical sections.

The simplest way to reduce the fluctuations ζ α due to an
implicit accounting for the higher terms of the expansion of the
free energy F(V ) (formula (6) in [9]) consists in decreasing the
effective interaction constant U in the quadratic term of the free
energy, i.e. in the replacement of the constant U in formulae
for the fluctuations ζ α by U2 = cU , where c is a parameter
(slightly less than 1) estimated from experience. With c =
0.985 it is possible to obtain full agreement with experiment for
the Curie temperature: TC = 1.01T exp

C , for the paramagnetic
Curie point: �C = 1.06T exp

C and for the effective magnetic
moment: meff = 0.97mexp

eff . But on the whole the curve for the
magnetization does not fit the experimental one well enough.
Qualitatively the calculated curve m(T ) stays similar to the one

Figure 4. As figure 3, but calculated with mexp
0 = 1.70 μB.

obtained with c = 1 (figure 4), i.e. it still has the snake-like
form. The reason is that the above change of the constant U
yields a uniform change of the fluctuations, while to remove
the ‘snake’ one has to account for the interaction between the
fluctuations that becomes more intense with temperature9.

In the SCR calculations [22], the first-order transition at
TC was eliminated entirely when the χ−1

‖ was approximated

by χ−1
⊥ (the case η = 0 in (3.18) in [22]). However, in

our calculation with ζ z = ζ x , the magnetic characteristics
behaviour represented in figure 4 is retained. In [23, 24], to
avoid the fictitious first-order transition in the SCR theory,
a single equation for the longitudinal χ‖ and transverse χ⊥
susceptibilities was suggested. The relation that couples
χ‖ and χ⊥ is based on the assumption that the total local
spin fluctuation, i.e. the sum of the zero-point and thermal
spin fluctuations, is conserved as it is in the Heisenberg
local moment theory, and may be somehow justified for
weak ferromagnets. In our case, the two equations for the
fluctuations ζ x and ζ z are coupled to each other, as well
as to the other two equations of system (1)–(4). However,
system (1)–(4) is obtained using the quadratic approximation
of the free energy, which does not account for the higher-order
interaction (the anharmonicity of the fluctuations). Apparently,
the coupling of the ζ x and ζ z in system (1)–(4) is insufficient.

Note that the temperature hysteresis is observed not only
in the Fe–Ni Invar, but also in the usual Fe, i.e. it is a general
problem for strong ferromagnets with sharply increasing spin
fluctuations. To demonstrate that, we take as the initial DOS
the one of non-magnetic Fe, calculated in the local-density
approximation by the KKR method with a self-consistent
potential [40]. Then the DOS is slightly smoothed out by
convolution with the Lorentz function of half-width � =
0.001W (W = 7.16 eV is the bandwidth) and normalized
to one d band of unit width. With the help of smoothing we
take into account the damping of one-electron states resulting

9 The reduction of the fluctuations with the help of U2 is formally
equivalent to the change of the λ(q, ω) in the expression for the dynamical
susceptibility (4.19) in [2] by a constant.
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Figure 5. The DOS of the d band of non-magnetic Fe, calculated by
the KKR method with a self-consistent potential (——), and the one
smoothed out by convolution with the Lorentz function of half-width
� = 0.001 (– – –). The energy ε and half-width � are in units of the
bandwidth W = 7.16 eV. The vertical line indicates the position of
the Fermi level εF.

from electron–electron correlations. The smoothed DOS of the
d band ν(ε) used for calculation is represented in figure 5.
The number of d electrons per atom Ne = Nne is equal to
7.43. The effective interaction constant U determined from
mexp

0 = 2.217 μB [41] is 0.741W . As can be seen from
figure 6, which shows the results of our calculation for the
magnetic characteristics in the forward and backward changes
of temperature, in Fe the hysteresis loop is even larger than in
the Fe–Ni Invar.

However, the temperature behaviour of magnetization
near the jump in the Fe–Ni Invar and Fe is qualitatively
different (compare figures 3 and 6). In the former, the
magnetization does not jump down to zero, i.e. the switching-
over to the paramagnetic state does not occur. Therefore, in
Fe–Ni Invar, a small change of the initial data only smears the
discontinuous jump into a smooth curve with an inflection (see
section 4). In contrast, in the case of Fe, the smoothing could
transform the first-order transition to the second-order one.

Finally, as an alternative attempt to eliminate the
discontinuous jump, we carried out calculations for Fe and Fe–
Ni Invar with the longitudinal or transverse fluctuations only.
As should be expected, the switching-off of the transverse
or longitudinal fluctuations yields a Curie temperature almost
twice as large as the experimental one. Worse agreement
with experiment is achieved, in this case, for other magnetic
characteristics as well. Most importantly, the use of models
with a one-dimensional fluctuating field does not solve
the problem of temperature dependence for Fe and Fe–Ni
Invar. In particular, in the model accounting for longitudinal
fluctuations only, the magnetization decreases too slowly with
the increase in temperature and the discontinuous jump (first-
order transition) turns out to be too sharp. In the model
accounting for transverse fluctuations only, the magnetization
decreases faster and agreement with experiment at low
temperatures is achieved, but singularities of the magnetization
curve remain.

Figure 6. The magnetization m(T )/m(0) (—— calculation, ♦♦♦♦
experiment [41]), the mean square of spin fluctuations ζ x (- - - -) and
ζ z (− − −) in units of the square of the mean exchange field at
T = 0, the reciprocal paramagnetic susceptibility χ−1(T ) (— · —)
in units of T exp

C /μ2
B and the local magnetic moment mL(T )/m(0)

(· · · · · ·) of Fe calculated in the DNA of the SFT with
mexp

0 = 2.217 μB under forward and backward changes of
temperature.

6. Conclusions

Calculations of the magnetic properties of Fe and Fe–Ni Invar
in the DNA of the SFT showed that the coordinate bisection
method is quite applicable to practical calculations at finite
temperatures. The instability at high temperatures is connected
not with the solution method—the two different numerical
methods gave well-agreed results—but with the system of
nonlinear equations itself.

The problem is that in Fe and in alloys with a considerable
content of Fe, like Fe–Ni Invar, the spin fluctuations at high
temperatures increase sharply, which means the parameters
λα

L = 1 − Uχα
L (0) tend to zero. Consequently, there is a

strong dependence of the solution to the system of nonlinear
equations (1)–(4) on the accuracy of the effective constant U
and the static local susceptibility χα

L (0)10.
Note that the problem of temperature dependence is

connected not only with the system of equations, but also
with the initial parameters dependent on the real ferromagnet
(the DOS ν(ε), the number of d electrons ne, the effective
interaction constant U , etc). Each particular set of data yields
its own solution to the system of nonlinear integro-differential
equations (1)–(4). For example, in Co and Ni no instabilities
were found at all (see, e.g., [6]). Even in the case of Fe
and Fe–Ni Invar, reasonable changes of the initial data and/or
the system of equations can either remove or at least reduce
considerably the effect of the instability. Finally, as our
calculations show, with only longitudinal fluctuations taken
into account the discontinuous jump near TC only increases,
i.e. accounting for both transverse and longitudinal fluctuations
does not worsen the situation, as stated in [43], but improves it.

10 High sensitivity of the local magnetic characteristics of iron to the value of
U at high temperatures is well illustrated in [42].
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Apparently, for transition metals and alloys with strong
spin fluctuations and large magnetization, the approxima-
tion [5] of the SFT should be improved to be equally appli-
cable at high temperatures. It is necessary to exceed the limits
of the quadratic approximations for the free energy of elec-
trons in the fluctuating exchange field F(V ) and for the fluctu-
ation contribution to the self-energy part ��. Quite possible,
a more consistent account—not only in the derivation of the
formula (10)—of the short-range magnetic order is necessary.
Work in this direction is underway. We expect that the reduc-
tion of the sharp increase in the fluctuations by means of the
terms of higher order in the expansions of F(V ) and �� and
a consistent account of the short-range order will allow us not
only to eliminate the instability of the solution but also, which
is more important, will allow us to improve the agreement with
the experiment at high temperatures.

As regards the original coordinate bisection method for
solving the system of nonlinear equations and the method for
the analysis of the instability domain, which are numerically
justified in the present paper (and analytically in [36]), they
can be of interest by themselves.
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Appendix. Modified system of equations of the SFT

Instead of the spin fluctuations ζ x and ζ z , we introduce the
mean value ζ̄ = (2ζ x +ζ z)/3 and the difference �ζ = ζ x −ζ z

(recall that ζ y = ζ x ). Substituting

ζ x = ζ̄ + �ζ/3 ζ z = ζ̄ − 2�ζ/3 (A.1)

we transform the initial system (1)–(4) into an equivalent one

ϕ̃1(μ, sz, ζ̄ ,�ζ ) = 0 (A.2)

ϕ̃2(μ, sz, ζ̄ ,�ζ ) = 0 (A.3)

ϕ̃3(μ, sz, ζ̄ ,�ζ ) ≡ (2g̃3(μ, sz , ζ̄ ,�ζ )

+ g̃4(μ, sz , ζ̄ ,�ζ ))/3 − ζ̄ = 0 (A.4)

ϕ̃4(μ, sz, ζ̄ ,�ζ ) ≡ g̃3(μ, sz, ζ̄ ,�ζ ) − g̃4(μ, sz, ζ̄ ,�ζ )

− �ζ = 0 (A.5)

where g3(μ, sz, ζ x , ζ z) = U T/(2Nλx
L)I x and g4(μ, sz, ζ x ,

ζ z) = U T/(2Nλz
L)I z , and the tilde stands for the result of

the substitution (A.1). Now, instead of system (A.2)–(A.5),
we solve the system of the first three equations (A.2)–(A.4), as
if �ζ were fixed, while at each step �ζ is refined by simple
iterations of the last equation from the formula

�ζk+1 = g̃3(μk, sz
k , ζ̄k,�ζk) − g̃4(μk, sz

k , ζ̄k,�ζk)

where k = 0, 1, 2, . . . is the number of the step of the solution
algorithm for the system (A.2)–(A.4), and ζ̄0 and �ζ0 are
taken from the calculation with the preceding value of the
temperature.
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